skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pareja‐Roman, L_Fernando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract River plumes often interact with capes in the coastal ocean, impacting local hydrodynamics and the transport of scalars. However, our current knowledge on how capes affect river plume separation, mixing, and retention is limited. Here, we conducted idealized numerical experiments with Gaussian‐shaped capes of varying curvature radii, constant river discharge, a sloping bottom, and scenarios with and without downwelling winds. We found that river plumes separate from capes when the Rossby number is above 1, a criterion that had not been tested for plume separation. This Rossby number is based on the plume velocity, the Coriolis factor, and the radius of curvature of the cape. Freshwater accumulation is greatest at the lee of narrow (i.e., pointy) capes under calm winds, but decreases significantly in downwelling winds or around broader capes. 
    more » « less